Development of software tool for image compression based on clustering.
Abstract
The article is devoted to the development of a software tool for image compression based on clustering. A general classification of raster image compression methods is given. The main methods of data clustering and their application to reduce the amount of data are highlighted. The analysis of existing software solutions for image compression has been carried out. The K-Means algorithm in the problems of image compression is considered. A conceptual model of the system has been built. The block diagram of the algorithm for the operation of a software tool for image compression based on clustering has been developed. A use-case diagram and a diagram of activitiy of the software tool are given. The diagram of the components of the software is considered. The user interface of the software tool has been developed.
References
OptiPNG [Eлектронний ресурс] – Режим доступу: http://optipng.sourceforge.net/
FILEminimizer Pictures [Eлектронний ресурс] – Режим доступу: https://balesio.com/fileminimizerpictures/eng/
index.php
Cesium Image Compressor [Eлектронний ресурс] – Режим доступу: https://saerasoft.com/caesium
Pingo: a fast image optimizer for web [Eлектронний ресурс] – Режим доступу: https://css-ig.net/pingo
Oxipng [Eлектронний ресурс] – Режим доступу: https://github.com/mvasilkov/oxipng#readme
OxiPNG and Pngout [Eлектронний ресурс] – Режим доступу: https://www.vox.me.uk/post/2020/08/oxipng-and-
pngout/
Rust [Eлектронний ресурс] – Режим доступу: https://www.rust-lang.org/
Piech Ch. K Means [Eлектронний ресурс] – Режим доступу: https://stanford.edu/~cpiech/cs221/handouts/kmeans.html
Dabbura I. K-means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks [Eлектронний ресурс] – Режим доступу: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and- drawbacks-aa03e644b48a
Abstract views: 0 PDF Downloads: 0