Mathematical modeling of cyber-physical biosensor and immunosensory systems.
Abstract
In the article the model of atematychni cyber and physical biosensor systems for forecasting period of storage,electrochemical biosensor cyber physical systems, cyber physical system to determine glucose levels. A mathematical model of the cyber-physical immunosensory system on a hexagonal lattice based on a system of delayed differential equations was developed. The lattice model of antigen-antibody interaction for a hexagonal array of immunopixels is described. The mathematical modeling of the dynamic logic of the cyber-physical immunosensory system is presented . It was conducted to simulate the linear modeling of the dynamic logic of the cyber-physical immunosensory system in the form of lattice images of the probability of binding of antigens to antibodies in pixels of the system , with the inversion of fluorescence pixels , is the lexicronic signal from the converter, which characterizes the number of fluorescing pixels .
References
X. Jiang, M. G. Spencer “Electrochemical impedance biosensor with electrode pixels for precise counting of CD4+ cells: A microchip for quantitative diagnosis of HIV infec- tion status of AIDS patients,” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1622–1628, Mar. 2010.
P. B. Luppa, L. J. Sokoll, D. W. Chan “Immunosensors principles and applications to clinical chemistry,” Clinica Chimica Acta, vol. 314, no. 1, pp. 1–26, 2001.
E. A. Lee “Cyber physical systems: Design challenges,” Center for Hybrid and Embedded Software Systems, EECS University of California, Berkeley, CA 94720, USA, Tech. Rep. UCB/EECS-2008-8, Jan. 2008. Available at: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/ EECS-2008-8.pdf.
J. Lee, B. Bagheri, H.-A. Kao “A cyber-physical systems architecture for industry 4.0-based manufacturing systems,” Manufacturing Letters, vol. 3, pp. 18–23, 2015, ISSN: 2213- 8463. Available at: http://www.sciencedirect.com/science/ article/pii/S221384631400025X.
A. Platzer, “Differential dynamic logic for hybrid systems.,” J. Autom. Reas., vol. 41, no. 2, pp. 143–189, 2008, ISSN: 0168-7433. DOI: 10.1007/s10817-008-9103-8.
Martsenyuk V.P., Klos-Witkowska A., Sverstiuk A.S. Study of classification of immunosensors from viewpoint of medical tasks // Medical informatics and engineering. – 2018.-№ 1(41). – p.13-19.
Bihuniak T.V., Sverstiuk A.S., Bihuniak K.O. Deiaki aspekty vykorystannia imunosensoriv u medytsyni // Medychnyi forum. – 2018. – no. 14 (14). – pp. 8-11.
Martsenyuk V.P., Klos-Witkowska A., Sverstiuk A.S., Bihunyak T.V. On principles, methods and areas of medical and biological application of optical immunosensors // Medical informatics and engineering. – 2018. – № 2 (42). – p.28-36.
H.J. Cruz, C.C. Rosa, A.G. Oliva “Immunosensors for diagnostic applications,” Parasitology research, vol. 88, S4–S7, 2002.
I.A. Byely`x, M.F. Kleshhev Navchal`ny`j posibny`k „Biologichni ta ximichni sensorni sy`stemy`” Xarkiv NTU «XPI», 2011. – 143s.
Turner, A. P. (2013). Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184–3196. doi:10.1039/c3cs35528d.
Citartan, M., Gopinath, S. C., Tominaga, J., and Tang, T. H. (2013). Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138, 3576–3592. doi:10.1039/c3an36828a.
Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., and Zhang, W. (2015). Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 15, 1–17. d oi:10.3109/07388551.2014.991270.
Martsenyuk V.P. Podhod k issledovaniyu globalnoy asimptoticheskoy ustoychivosti reshetchatyih differentsialnyih uravneniy s zapazdyivaniem dlya modelirovaniya immunosensorov / A.S. Sverstyuk, I.E. Andruschak // Mezhdunarodnyiy nauchno-tehnicheskiy zhurnal “Problemyi upravleniya i informatiki”. – 2019. – № 1. – S. 62–74.
Sverstiuk A.S. Kiberfizychni biosensorni ta imunosensorni systemy / A.S. Sverstiuk // Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky. – Khmelnytskyi, 2019. – № 1. – S. 145–154.
Sverstiuk А.S. Research of Global Attractability of Solutions and Stability of the Immunosensor Model Using Difference Equations on the Hexagonal Lattice / А.S. Sverstiuk // “Іnnovative biosystems and bioengineering”. – 2019. – Vol. 3, № 1. – С. 17-26. doi: 10.20535/ibb.2019.3.1.157644.
Harris, J. M., Reyes, C., and Lopez, G. P. (2013). Common causes of glucose oxidase instability in in vivo biosensing: a brief review. J. Diabetes Sci. Technol. 7, 1030–1038.
S.L. Snyder, K.B. McAuleya, P.J. McLellana, E.B. Brouwer, T. McCawb, Modeling the thermal stability of enzyme-based in vitro diagnostics biosensors, Sensors and Actuators B 156 (2011) 621–630.
T.D. Gibson, J.N. Hulbert, S.M. Parker, J.R.Woodward, I.J. Higgins, Extended shelf life of enzyme-based biosensors using a novel stabilization system, Biosens. Bioelectron. 7 (1992) 701–708.
N.A. Chaniotakis, Enzyme stabilization strategies based on electrolytes and polyelectrolytes for biosensor applications, Anal. Bioanal. Chem. 378 (2004) 89–95.
S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosens. Bioelectron. 14 (1999) 443–456.
P. d’Orazio, Biosensors in clinical chemistry, Clin. Chim. Acta 334 (2003) 41–69.
J.T. Carstensen, M. Franchini, K. Ertel, Statistical approaches to stability protocol design, J. Pharm. Sci. 81 (1992) 303–308.
U.S. Food and Drug Administration, Guidance for industry: Q1A(R2) Stability testing of new drug substances and products,. U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER) (2003).
D.G. Watts, Estimating parameters in nonlinear rate equations, Can. J. Chem. Eng. 72 (1994) 701–710.
B. Kommanaboyina, C.T. Rhodes, Effects of temperature excursions on mean kinetic temperature and shelf life, Drug Dev. Ind. Pharm. 25 (1999) 1301–1306.
K. McAteer, C.E. Simpson, T.D. Gibson, S. Gueguen, M. Boujtita, N. El Murr, Proposed model for shelf-life prediction of stabilized commercial enzyme-based systems and biosensors, J. Mol. Catal. B: Enzym. 7 (1999) 47–56.
C.-X. Liu, L.-Y. Jiang, H. Wang, Z.-H. Guo, X.-X. Cai, A novel disposable amperometric biosensor based on trienzyme electrode for the determination of total creatine kinase, Sens. Actuators B 122 (2007) 295–300.
N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev. 39 (2010) 1747–1763, http://dx.doi.org/10.1039/B714449K.
R. Popovtzer, T. Neufeld, D. Biran, E.Z. Ron, J. Rishpon, Y. Shacham-Diamand, Novel integrated electrochemical nano-biochip for toxicity detection in water, Nano Lett. 5 (2005) 1023–1027, http://dx.doi.org/10.1021/nl0503227.
K. Yagi, Applications of whole-cell bacterial sensors in biotechnology and environmental science, Appl. Microbiol. Biotechnol. 73 (2007) 1251–1258, http://dx.doi.org/10.1007/s00253-006-0718-6.
H. Ben-Yoav, A. Biran, R. Pedahzur, S. Belkin, S. Buchinger, G. Reifferscheid, Y. Shacham-Diamand, A whole cell electrochemical biosensor for water genotoxicity bio-detection, Electrochim. Acta 54 (2009) 6113–6118, http://dx. doi.org/10.1016/j.electacta.2009.01.061.
S. Vernick, A. Freeman, J. Rishpon, Y. Niv, A. Vilkin, Y. Shacham-Diamand, Electrochemical biosensing for direct biopsy slices screening for colorectal cancer detection, J. Electrochem. Soc. 158 (2011) P1–P4, http://dx.doi.org/10. 1149/1.3507268.
S. Kumar, S. Kundu, K. Pakshirajan, V.V. Dasu, Cephalosporins determination with a novel microbial biosensor based on permeabilized pseudomonas aeruginosa whole cells, Appl. Biochem. Biotechnol. 151 (2008) 653–664, http://dx.doi.org/10.1007/s12010-008-8280-6.
G.E. Tsotsou, A.E.G. Cass, G. Gilardi, High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants, Biosens. Bioelectron. 17 (2002) 119–131, http://dx.doi.org/10.1016/S0956- 5663(01)00285-8.
T. Yoetz-Kopelman, C. Porat-Ophir, Y. Shacham-Diamand, A. Freeman, Whole-cell amperometric biosensor for screening of cytochrome P450 inhibitors, Sens. Actuators B: Chem. (2015), http://dx.doi.org/10.1016/j.snb. 2015.09.111.
A.M. Ferrini, V. Mannoni, G. Carpico, G.E. Pellegrini, Detection and identification of b-lactam residues in milk using a hybrid biosensor, J. Agric. Food Chem. 56 (2008) 784–788, http://dx.doi.org/10.1021/jf071479i.
Tal Yoetz-Kopelmana, Richa Pandeya, Amihay Freemanb, Yosi Shacham-Diamand. Modeling of suspended vs. immobilized whole-cell amperometric biosensors. Sensors and Actuators B 238 (2017) 1248–1257, http://dx.doi.org/10.1016/j.snb.2016.09.062
J.M.Montornes, M.S.Vreeke, I.Katakis, Glucose biosensors, bioelectrochemistry, Fundam. Exp. Tech. Appl 199–217 (2008) ch5, http://dx.doi.org/10.1002/9780470753842; D.Shi, Biosensors in fermentation applications, in: A.F.Jozala(Ed.), Ferment. Process., InTech, 2017, p.310, http://dx.doi.org/10.5772/711.
D.Semenovaa, A.Zubova, Yu.E.Silinab, L.Michelic, M.Kochb, A.C.Fernandesa, K.V.Gernaey, Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimization, Sensors and Actuators B:Chemical, 259 (2018) 945-955
Martsenyuk V. Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay / A. Klos-Witkowska, A. Sverstiuk // Electronic Journal of Qualitative Theory of Differential Equations: No. 2018(27), р. 1-31. DOI: 10.14232/ejqtde.2018.1.27.
Abstract views: 6 PDF Downloads: 3