Improving the quality of large-size parts produced by FDM 3D printing.

Keywords: additive technologies, additive manufacturing, 3D printing, FDM printing, printing process stages, part quality, quality parameters, parameter modeling, printing parameter optimization, evaluation of microclimatic parameters, slicer, slicer settings, temperature conditions, means of maintaining microclimatic conditions, improvement of printer's design.

Abstract

Modern equipment allows to regulate only the temperature of the nozzle directly (plastic printing temperature), without taking into account the temperature of the external environment. It is known that most models of printers have open casings and the product can cool down unevenly. The probability of getting defects in both the quality characteristics of the surfaces and the shape increases. The proposal we described to modernize the printer design will optimize the entire printing process. Reducing or eliminating the need for post-processing of the part, will reduce the time of the complete cycle of its production and reduce its final cost. In order to avoid mistakes at the stage of prototype production, the possibility of latent errors after the launch of the product in series will be excluded. The article determines how the maintenance of microclimatic conditions in the printing area affects the quality parameters of the part. It is established that the quality of large-size products manufactured by FDM printing method is significantly affected by the process of maintaining temperature conditions. As a result of the study the ways to eliminate the shortcomings of printing, in particular, the modernization of the printer have been outlined

References

Anitha R., Arunachalam S., Radhakrishnan P. (2001). Critical parameters influencing the quality of prototypes in fused deposition modeling // J. Mater. Process. Technol. – Vol. 118. – №. 1–3. – P. 385–388.

Arnold Christin, Monsees Delf, Hey Jeremias, Schweyen Ramona (2019). Surface Quality of 3D-Printed Models as a Function of Various Printing Parameters [Електронний ресурс] // Materials 12(12):1970. –– Pежим доступу: DOI:10.3390/ma12121970. – Назва з екрану.

Camposeco-Negrete Carmita (2020). Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability [Електронний ресурс] // The International Journal of Advanced Manufacturing Technology. – №108 (7-8). – Pежим доступу: DOI:10.1007/s00170-020-05555-9. – Назва з екрану.

Carou Diego, Pérez Mercedes, Medina-Sánchez G., García-Collado Alberto, Gupta Munish (2018). Surface Quality Enhancement of Fused Deposition Modeling (FDM) Printed Samples Based on the Selection of Critical Printing Parameters. Projects: Additive manufacturing processes [Електронний ресурс] // Performance Assessment of 3D- Printed Parts Materials. – №11(8). – Режим доступу: DOI:10.3390/ma11081382. – Назва з екрану.

Changxiu Zhou, Tiantian Han (2021). Research on the Influencing Factors of FDM 3D Printing Accuracy [Електронний ресурс] // Journal of Physics Conference Series 1838(1):012027. – Режим доступу: DOI:10.1088/1742-6596/1838/1/012027. – Назва з екрану.

Charalampous Paschalis, Kostavelis Ioannis, Kontodina Theodora, Tzovaras Dimitrios (2021). FDM Learning-based error modeling in FDM 3D printing process [Електронний ресурс] // Rapid Prototyping Journal ahead-of-print (ahead-of-print). – Режим доступу: DOI:10.1108/RPJ-03-2020-0046. – Назва з екрану.

Coronavirus, a Brescia manca una valvola per i rianimatori: ingegneri e fisici la stampano in 3D in sei ore / Andrea Sparaciari [Електронний ресурс] // Business Insider Italia. – 14.03.2020. – Pежим доступу: https://it.businessinsider.com/coronavirus-manca-la-valvola-per-uno-strumento-di-rianimazione-e-noi-la-stampiamo-in-3D-accade-nellospedale-di-chiari-brescia/. – Назва з екрану.

GVR: Global 3D Printing Market Size was $11.58 Billion in 2019 [Електронний ресурс] // Printed Electronics now. – 02.10.20. – Режим доступу: https://www.printedelectronicsnow.com/contents/view_breaking-news/2020-02-10/gvr-global-3D-printing-market-size-was-1158-billion-in-2019/.– Назва з екрану.

Ngoc-Hien Tran, Van-Nam Nguyen, Anh-Vu Ngo, Cuong Nguyen (2017). Study on the Effect of Fused Deposition Modeling (FDM) Process Parameters on the Printed Part Quality [Електронний ресурс]. – Режим доступу: DOI:10.9790/9622-0712027177. – Назва з екрану.

Popa Alexandru, Faur Nicolae, Hluscu Mihai, Belin Cosmin (2019). Evaluation of the Mechanical Properties of the Samples Made by FDM 3D Printing [Електронний ресурс] // Materiale plastice. – №56(3). – P. 500-504. – Pежим доступу: DOI:10.37358/MP.19.3.5217. – Назва з екрану.

Radhwan Hussin, Shayfull Zamree Bin Abd. Rahim, Muhamad Farizuan Rosli, M. S. M. Effendi (2019). Optimization parameter effects on the quality surface finish of the three-dimensional printing (3D-printing) fused deposition modeling (FDM) using RSM [Електронний ресурс] // AIP Conference Proceedings 2129(1):020155. – Режим доступу: DOI:10.1063/1.5118163. – Назва з екрану.

Rahmatabadi Davood, Aminzadeh Ahmad, Aberoumand Mohammad, Moradi Mahmoud (2021). Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Parts [Електронний ресурс]// Fused Deposition Modeling Based 3D Printing. – P. 131-150. – Режим доступу: DOI:10.1007/978-3-030-68024-4_7. – Назва з екрану.

Ruben Bayu Kristiawan, Fitrian Imaduddin, Dody Ariawan, Ubaidillah Sabino (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters [Електронний ресурс] // Open Engineering 11(1). – Р. 639-649. – Режим доступу: DOI:10.1515/eng-2021-0063. – Назва з екрану.

Sugavaneswaran M., Arumaikkannu G. Modelling for randomly oriented multi material additive manufacturing component and its fabrication // Materials & Design. – February 2014. – Volume 54. – P. 779-785.

To prawdziwy boom. Do końca tego roku sprzedaż drukarek 3D wzrośnie o 100 procent [Електронний ресурс] // tvn24. – 17 października 2016. – Режим доступу: https://tvn24.pl/biznes/tech/sprzedaz-drukarek-3D-wzrosnie-o-ponad-100-proc-do-konca-2016-roku-ra684502-4472347. – Назва з екрану.

Tontowi Alva, L Ramdani, Rosa vella Erdizon, Dawi Karomati Baroroh (2017). Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part [Електронний ресурс] // International Journal of Engineering and Technology. – №9(2). – P. 589-600. – Pежим доступу: DOI:10.21817/ijet/2017/v9i2/170902044. – Назва з екрану.

Zagidulin R. S., Zezin N. I., Rodionov N. V. (2021). Improving the quality of FDM 3D printing of UAV and aircraft parts and assemblies by parametric software changes [Електронний ресурс] // IOP Conference Series Materials Science and Engineering 1027:012-031. – Режим доступу: DOI:10.1088/1757-899X/1027/1/012031. – Назва з екрану.

Abstract views: 0
PDF Downloads: 0
Published
2021-06-11
How to Cite
Vysloukh, S., Yaryhin, V., GlobaО., & Ivanenko, R. (2021). Improving the quality of large-size parts produced by FDM 3D printing. COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, (43), 5-11. https://doi.org/10.36910/6775-2524-0560-2021-43-01