A technique for processing audio signals using algorithms based on the Python programming language.

Keywords: digital processing of audio data, high-level programming language Python, python libraries, NumPy, SciPy, Matplotlib.


The analysis of the possibility of using an interpreted object-oriented programming language when processing arrays of audio data as a digital way of representing audio signals is carried out. The principle of using the high-level programming languagePython with strong dynamic typing for the indicated purpose is demonstrated. The features of application in this area of еру modules (python libraries) NumPy, SciPyand Matplotlib have been determined. Methods for processing and modifying audio data arrays are presented for further use in multimedia computer networks. A mathematical model of audio data processing has been built, the efficiency of which has been tested on the basis of appropriate software algorithms. The possibility of solving urgent problems and studying the theoretical aspects of problems in the area of audio data processing by using an interpreted object-oriented programming language and specialized open source libraries is shown.


BjörnSchuller. Intelligent audio analysis/ BjörnSchuller. — Berlin: Springer, 2013. — 345 p. — ISBN: 978-3-642-36805-09.

W. Jackson, “The Algorithms of Digital Audio: Audio Processing”, Digital Audio Editing Fundamentals, vol. 1, pp. 55-64, 2015, doi:10.1007/978-1-4842-1648-4_8.

W. Jackson, “The Data Footprint of Digital Audio: Compression”, Digital Audio Editing Fundamentals, vol. 2, pp. 107-117, 2015, doi:10.1007/978-1-4842-1648-4_12.

X. Wu, F. Tian andJ. Liu, “Efficient spectrum multiplexing using wavelet packet modulation and channel estimation based on ANNs”, International Conference on Audio, Language and Image Processing, NY, 2008, doi:10.1109/icalip.2008.4590189.

D. Riordan, J. Walsh, and P.Doody,“Modelling of the Human Perception of Sound using ANNs” 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communities Technologies (ISSC 2014/CIICT 2014), 2014), doi:10.1049/cp.2014.0668.

Y.D.Pra, &F. Fontana,“Programming Real-Time Sound in Python”, Applied Sciences, vol.10, no 12, 4214-4221, 2020, doi:10.3390/app10124214.

G. Schuller, “The Python Perceptual Audio Coder”, Filter Banks and Audio Coding, vol. 3, pp. 155-160, 2020, doi:10.1007/978-3-030-51249-1_6.

C. Howard and B.Cazzolato,“Sound Absorption in a Lined Duct”, Acoustic Analyses Using Matlab and Ansys,vol 11, 360-407, 2014, doi:10.1201/b17825-12.

S.L. Campbell, J. Chancelier&R. Nikoukhah“Modeling and Simulation in Scilab”, Modeling and Simulation in Scilab/Scicos with ScicosLabvol. 4, no 4, pp. 73-106, 2014, doi:10.1007/978-1-4419-5527-2_3.

I.Rouno,“Fourier Sound Synthesis”, Wolfram Demonstrations Project, vol. 3, 2007. doi:10.3840/001114.

John Hunter Darren Dale Eric Firing Michael Droettboom and the matplotlib development team, September 16, 2020.Режим доступу: https://matplotlib.org/3.3.2/Matplotlib.pdf, https://matplotlib.org/3.3.2/contents.html.

SciPy community, Scipy 1.5.3 Reference Guide , October 17, 2020. Режим доступу: https://docs.scipy.org/doc/scipy-1.5.3/scipy-ref-1.5.3.pdf
13. R. Smallshire& A. Bingham. Python /R. Smallshire. —Culemborg: Van Duuren Media, 2019. — 352 p., ISBN-10 : 1788293185.

Abstract views: 0
PDF Downloads: 0
How to Cite
DmitrenkoТ. (2020). A technique for processing audio signals using algorithms based on the Python programming language. COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, (41), 152-158. https://doi.org/10.36910/6775-2524-0560-2020-41-24
Computer science and computer engineering